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Part I
Mimetic Methods

1. What is a mimetic discretization
2. An algebraic topology framework
3. Direct and conforming discretizations

Mixed, Galerkin and Least-Squares 
methods for 2nd order problems share a 

common ancestor: the 4-field principle

A new interpretation of Least Squares:
Realizations of a weak 

discrete Hodge * operator

Part II
Compatibility matters!
Mimetic LSP for eddy currents and 
diffusion/heat equations and their  

advantages over nodal LS.

A prelude:
Least-Squares Principles

What are least-squares 
and the reasons to 

use them

For diffusion problems they give
- the same scalar as Galerkin method  
- the same flux as in the mixed method

LS acquire surprising new 
properties when elements from 

mixed methods are used

Mac Hyman, Misha Shashkov
T-7

Los Alamos National Laboratory

Max Gunzburger
CSIT 

Florida State University

The Plan
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A Prelude
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Least-squares 101

 Using C0 nodal elements
 Avoiding inf-sup conditions
 Solving SPD systems

      

! 

Lu = f  in  "

Ru = h on  #

 Conservation
 Conservation
 Conservation

We will show that:
 Using nodal elements is not necessarily the best choice in LSFEM, and so it is
    arguably the least-important advantage attributed to least-squares methods
 By using other elements least-squares acquire additional conservation properties
 Surprisingly, this kind of least-squares turns out to be related to mixed methods

      

! 

min
u"X

J u; f ,h( ) #
1

2
Lu$ f

X ,%

2
+ Ru $ h

Y ,&

2( )  

    

! 

Lu,Lv( )
"

+ Ru,Rv( )
#

= f ,Lu( )
"

+ h,Rv( )
#

! 

Au = b

Top 3 reasons people
want to do least squares: don’t want to do least squares:
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Least-squares for diffusion

  

! 

" #u+ $%," # v( ) + u+"%,v( ) = f ," # v( ) &v' HN (,div( )

" #u+ $%,$)( ) + u+"%,")( ) = f ,$)( ) &) ' HD (,grad( )! 

min
v"H

N
#,div( );$"HD

1 #( )
J v,$; f( )

! 

" #u+ $% = f

u+"% = 0

& 
' 
( 

) J u,%; f( ) =
1

2
" #u+ $% * f

0

2
+ u+"%

0

2( ) = 0

! 

"# $#% + &% = f

“Artificial” energy norm

! 

J u,";0( ) =
1

2
# $u+ %"

0

2
+ u+#"

0

2( ) =||| (u,") |||2

! 

C1 u div

2
+ "

1

2( ) # ||| (u,") |||2 #C2 u div

2
+ "

1

2( )Norm equivalence

! 

Q
LS
u,";v,#( ) = $ %u+ &",$ % v + &#( ) + u+$",v +$#( )Inner-product equivalence

Stability

! 

C
1
u

div

2
+ "

1

2( ) #QLS u,";u,"( )

QLS u,";v,$( ) # C
2
u

div

2
+ "

1

2( )
1/ 2

v
div

2
+ $

1

2( )
1/ 2

←            coercivity

continuity   →

Introduced by Jespersen (1977), Fix, Gunzburger and Nicolaides (1977-85). See also Cai, Carey, Chang,
Jiang, Lazarov, Manteuffel et al  (1994-2000) and the survey B. & Gunzburger in SIAM Review, 1998
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In the dark ages least-squares
were deemed immune to compatibility

Discrete equations

! 

QLS uh,"h;vh,#h( ) = f ,$ % vh + &#h( ) ' vh,#h( )( Vh ) Sh

    

! 

u"u
h div

+ # " #
h 1

energy norm
1 2 4 4 4 3 4 4 4 

$ C inf
v h ,%h( )&Vh'Sh

u" v
h div

+ # " #
h 1

! 

" # "
h 0

$ Ch " # "
h 1

←    Using duality

This was deemed to be a “get out of jail” card needed to throw away compatibility
⇒  all variables “can” be approximated by the same, equal order C0 spaces

! 

V
h
" H #,div( ) & S

h
" H

1
#( )

Coercivity is inherited on all closed subspaces, and so any

are sufficient for stability of LSFEM and quasi-optimal energy norm error estimates

(including C0)

But:
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There was a little problem…

H(div)L2H1L2

2.003.002.003.00BA

2.002.022.003.00P2
1.002.001.002.00BA

0.991.381.002.00P1

vectorscalar
LS vs BA

Optimal convergence of vh in L2 has been achieved in 2 ways

is insufficient for optimal L2 convergence of vh!

! 

V
h
" H #,div( ) & S

h
" H

1
#( )

For LSP: /conformity ⇒ stability  but conformity ⇒ optimal L2 accuracy!
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By using an augmented LS principle

  

! 

" #u+ $% = f

u+"% = 0

& 
' 
( 

) 
* 
+ 
&" ,u = 0 in -; % = 0 on .D;u #n = 0 on .N

! 

J u,"; f( ) =
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2
# $u+ %" & f

0

2
+ u+#"

0

2
+ # 'u

0

2( )Functional

Idea

! 

u+"# = 0 $ "%u = 0

Augmented PDE

! 

C
1
u
1

2
+ "

1

2( ) # |||u," ||| # C2
u
1

2
+ "

1

2( )Norm equivalence

! 

u"u
h 1

+ # " #
h 1

$ Ch2 u
3

+ #
3( )

u"u
h 0

+ # " #
h 0

$ Ch3 u
3

+ #
3( )

Error estimate (P2)

(Carey et al, Jiang, Manteuffel et al. 1994-1997)

The trouble with this approach
The range of the solution operator is restricted to a “smoother” space,
causing the least-squares principle to miss less regular solutions that are
admissible for the original PDE! We will see an example of this problem.
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Or, by using a special grid
The Grid Decomposition Property (GDP)

! 

"v
h
# V

h

! 

v
h

= w
h

+ z
h

" # z
h

= 0

$ 
% 
& 

! 

w
h
,z

h( ) = 0

w
h 0

" C # $ v
h %1

+ h # $ v
h 0( )

& 

' 
( 

) ( 

Fix, Gunzburger, Nicolaides, 1976

The (only known)  C0 example

GDP is necessary and sufficient for stable and optimally accurate mixed
discretization of the Least-Squares Principle (and the Mixed Method)

Fix, Gunzburger, Nicolaides, Comp. Math with Appl. 5, pp.87-98, 1979

Theorem

! 

u"u
h div

+ # " #
h 1

$ Ch1 u
2

+ #
2( )

u"u
h 0

+ # " #
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$ Ch2 u
2

+ #
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Using the criss-cross grid
and Sh=∇• Vh :
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The mixed Galerkin connection
Lemma

! 

V
h satisfies the inf-sup condition   ⇒      verifies GDP

! 

V
h
,S

h( )

(Bochev, Gunzburger, SINUM 2005)

Except that they are not C0 (nodal)!

There are plenty of spaces that verify GDP

RT(k) spaces   k≥0BDM(k) spaces k≥1
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“Well-done” (mimetic) least-squares

Velocity and pressure spaces need not form a stable mixed pair!

For proof see Bochev, Gunzburger, SIAM J. NUM. ANAL. 2005Theorem.

   For φh∈ Pk
 and uh ∈ BDMk:              For φh∈ Pk

 and uh ∈ RTk :

! 

" # "
h 0

+ u#u
h 0

=O h
k+1( )

" # "
h 1

+ u#u
h div

=O h
k( )

! 

" # "
h 0

+ u#u
h 0

=O h
k( )

" # "
h 1

+ u#u
h div

=O h
k( )

Using nodal C0 elements for all variables is not the best choice!
(despite of what some people tell you!)

  

! 

D
h
" H

N
#,div( ) $ any with GDP

G
h
" H

D

1
#,grad( ) $ any that is C0

Instead, pose the discrete LSP                                   on this pair of spaces:

! 

min
v h "D

h
;#h "G

h
J vh ,#h; f( )
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A startling property of mimetic LS
Theorem

Assume that              solves the minimization problem 

! 

" h
,u

h( )

 In other words, the mimetic least-squares method computes

The same scalar approximation as in the Ritz-Galerkin method
The same vector approximation as in the Mixed Galerkin method

  

! 

min
" h#G h ; uh#Dh

˜ K " h
,u

h( ) $
1

2
A

%1/ 2
u

h +A&" h( )
0

2

+ '%1/ 2 & (uh + '" h % f( )
0

2) 
* 
+ 

, 
- 
. 

if γ>0,             is conservative in the sense that there exists                              such that

                               solves the Ritz-Galerkin method and

                               solves the Mixed Galerkin method and 

! 
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h
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Mimetic LS = Galerkin + Mixed Galerkin

 0.3166902E-010.6383042E-010.1296329E+00 0.2671283E+00Galerkin
 0.3166902E-010.6383042E-010.1296329E+00 0.2671283E+00Mimetic LS

H1 φ

0.4340574E-020.8750616E-020.1778803E-010.3679584E-01Mixed

Mimetic LS

Mixed

Mixed

Galerkin

Mimetic LS

Mimetic LS

 0.5621838E-040.2274961E-030.9378368E-030.3997943E-02

 0.3426716E+00 0.6894290E+000.1397179E+010.2869324E+01

0.1745720E-010.3523105E-010.7192623E-010.1514803E+00

 0.5621838E-040.2274961E-030.9378368E-030.3997943E-02
L2 φ

 0.3426716E+00 0.6894290E+000.1397179E+010.2869324E+01
H(div)

0.1745720E-010.3523105E-010.7192623E-010.1514803E+00
L2 u

128643216
                    grid
error

Scalar:   L2 and H1 errors of Mimetic LS and Galerkin identical

Vector:   L2 and H(div) errors of Mimetic LS and Mixed Galerkin identical
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A $64K Question

Q: what are the fundamental reasons for the method to
     acquire these new and attractive properties?

We see that a Least Squares perform better when using

– nodal C0 space for the scalar (same as in the Galerkin FEM)

– H(div) conforming space for the vector (same as in the Mixed Galerkin FEM)

To answer this question we will use algebraic topology
to develop a framework for compatible PDE

discretizations. Then, we will examine different discrete
models arising from this framework.
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Part I
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Algebraic topology approach

Framework for mimetic discretizations (Bochev, Hyman, IMA Proceedings)

– Translation: Fields → forms → cochains
– Basic mappings: reduction and reconstruction

 Combinatorial operations: induced by reduction map
 Natural operations: induced by reconstruction map
 Derived operations: induced by natural operations

Branin (1966), Dodzuik (1976), Hyman & Scovel (1988-92), Nicolaides (1993), Dezin
(1995), Shashkov (1990-), Mattiussi (1997), Schwalm (1999), Teixeira (2001), Marsden
et al (DEC) and many others…

Algebraic topology provides the tools to mimic the PDE structure
– Computational grid is algebraic topological complex
– k-forms are encoded as k-cell quantities (k-cochains)
– Derivative is provided by the coboundary
– Inner product induces combinatorial Hodge theory
– Singular cohomology preserved by the complex
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Differential Forms
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Smooth differential forms

DeRham complex
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L
2
,#( ){ }Sobolev spaces

Codifferential
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" :#
k
$( )%#

k
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Chains and cochains

! 

C
0
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# $ $ C

1

"
# $ $ C

2

"
# $ $ C

3

! 

C
0 "
# $ # C

1 "
# $ # C

2 "
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3

Computational grid = Chain complex

Field representation = Cochain complex
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C
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k
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*
! 

0 =""K 3 "
# $ $ "K 3 "

# $ $ K
3

! 

K
1 "
# $ # "K1 "

# $ # ""K1
= 0

! 

" i
," j = #ij

+/- +/-
+/- +/-

! 

",#$ = %",$

! 

" :C
k
#C

k$1

! 

"" = 0

! 

" :Ck
#C

k+1

! 

"" = 0
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Basic mappings
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L "
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# $ # C
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! 

I :C
k
"#

k
L
2
,$( )

  

! 
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! 
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s
)

No natural choice

Conforming
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k
"#

k
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! 

Id = "I

Natural choice
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#
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DeRham map
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"
k d
# $ # "
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% %

C
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# $ # C
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R CDP I
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% %

C
k &
# $ # C
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I   
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L
2
,$( )

    

! 

Range IR = "
k
d,K( )# "

k
d,$( )  

! 
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#
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% = d#
c

% = Rd#,c

Proof
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Combinatorial operations

Discrete derivative

Discrete integral

Forms are dual to manifolds 

! 

d",# = ",$#

Cochains are dual to chains

! 

"a,# = a,$#

 δ approximates d 
on cochains

  

! 

Rd = "R

δδ = 0! 

a

"

# = a,"

Stokes theorem

! 

"a,# = a,$#

! 

"1 1 0 0 0 0 0 0

0 "1 0 1 0 0 0 0

0 0 "1 1 0 0 0 0

"1 0 1 0 0 0 0 0

"1 0 0 0 1 0 0 0

0 "1 0 0 0 1 0 0

0 0 0 "1 0 0 0 1

0 0 "1 0 0 0 1 0

0 0 0 0 "1 1 0 0

0 0 0 0 0 "1 0 1

0 0 0 0 0 0 "1 1

0 0 0 0 "1 0 1 0

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
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% 
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( 
( 
( 
( 
( 
( 
( 
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( 
( 
( 
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( 
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! 

1 1 "1 "1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 "1 "1

1 0 0 0 "1 1 0 0 "1 0 0 0

0 0 1 0 0 0 1 "1 0 0 "1 0

0 0 0 1 "1 0 0 1 0 0 0 "1

0 1 0 0 0 "1 1 0 0 "1 0 0

# 

$ 

% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 

curl

! 

"1 1 1 "1 "1 1( )

div
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Natural and derived operations
Inner product

  

! 

a,b( )
x

= Ia,Ib( )
x

  

! 

a,b( )
"

= a,b( )
x
#

n

"

$ = Ia,Ib( )
"

Wedge product   

! 

" :C
k
#C

l
a C

k+ l

Adjoint derivative

Discrete Laplacian

  

! 

"* :Ck+1
a C

k

! 

"#a,b( )
$

= a,"b( )
$

  

! 

D :C
k
a C

k

! 

D = "#" + ""#

Provides a second set of grad, div and curl operators. Scalars encoded as 0
or 3-forms, vectors as 1 or 2-forms, derivative choice depends on encoding.

Natural

Derived

  

! 

a"b =R Ia"Ib( )

Derived operations are necessary to avoid internal inconsistencies between the
discrete operations: I is only approximate inverse of R and natural operations will clash

! 

d
"

= (#1)
k
" d "   

! 

"# = ($1)
k
R # d #I

! 

"#a,b( )
$

= a,"b( )
$

+O(hs)I must be regular and  ⇒   δ* not true adjoint

Example Natural adjoint 
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Mimetic properties (I)
Discrete Poincare lemma (existence of potentials in contractible domains)

! 

d"
k

= 0 # "
k

= d"
k+1

! 

"ck = 0 # c
k

= "ck+1

Discrete Stokes Theorem

! 

d"
k#1,ck = "

k#1,$ck

! 

"ck#1,c
k

= c
k#1
,$c

k

Discrete “Vector Calculus”

! 

dd = 0

! 

"" = " *"*= 0

Features of the continuum system that is implied by differential forms
calculus is inherited by the discrete model

Called mimetic property by Hyman and Scovel (1988)

! 

"#$ = (%1)kl$#"

! 

a"b = (#1)
kl
b"a

! 

d "#$( ) = d"#$ + (%1)k"#d$

! 

" a#b( ) = "a#b + ($1)k a#"b (Regular I )



Computational mathematics and algorithms  

Mimetic properties (II)

  

! 

d" = 0 # $R" = 0

Co-cycles of (Λ0, Λ1, Λ2,Λ3)                  co-cycles of (C0, C1, C2, C3)  

! 

R
" # " 

Inner product induces combinatorial Hodge theory on cochains

Discrete Harmonic forms

! 

H
k "( ) = # $ %k "( ) | d# = d&# = 0{ }

! 

H
k
K( ) = c

k
" C

k
|#ck = #$ck = 0{ }

! 

" = d# +$ + d
%&

! 

a = "b+ h + "#c

Theorem

! 

dimker "( ) = dimker D( )

Remarkable property of the mimetic D - kernel size is a topological invariant!

Discrete Hodge decomposition

GDP
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Discrete ∗ operation

Natural definition (Bossavit)

Derived definition (Hiptmair)

  

! 

"
N
:C

k
a C

n#k

  

! 

"
N

=R "I

  

! 

"
D
:C

k
a C

n#k

! 

",#( )
$

= "%&#
$

'

! 

a"#
D
b =

$

% a,b( )
$

Theorem

  

! 

"
N
R# h =R "# h $# h % Range IR( )

! 

b"#
N
b =

$

% a,b( )
$

+O h
s( )

  

! 

IR Ia"I #
D
b( ) =

$

% Ia"#Ib( )
$

%

! 

"
N

= "
D

+O h
s( )

mimics

CDP on the range

Weak CDP
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The trouble with the discrete ∗
Action of ∗ must be coordinated with the other discrete operations

IRδ∗∧(•,•)

———✓✓∗D

—✓———∗N

Analytic ∗ is a local, invertible operation ⇒ positive diagonal matrix

Construction of ∗ is nontrivial task unless a primal-dual grid is used!

  

! 

"
N
:C

k
a C

n#k

! 

dimC
k
" dimC

n#k cannot be a square matrix!⇒
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Implications

A consistent discrete framework requires a choice of a primary operation
either ∗ or (⋅,⋅) but not both

– Sufficient to give rise to combinatorial Hodge theory on cochains
– Easier to define than a discrete ∗ operation
– Incorporate material laws in the natural inner product, or
– Enforce material laws weakly (justified by their approximate nature)

The natural inner product is the primary operation in our approach

A discrete ∗ is the primary concept in Hiptmair (2000), Bossavit (1999)

– Inner product derived from discrete ∗ 
– discrete ∗ used in explicit discretization of material laws



Computational mathematics and algorithms  

Algebraic equivalents

SPDMk(⋅,⋅)

pairW12(∗Da)=M3a∗D

squareMk
-1

 Dk
TMk+1Dk+ Dk-1Mk-1

-1
 Dk-1

TMkD
rectangularMk

-1
 Dk

TMk+1δ*
∑ W21b2∧a1

W12
T=W21

∑ W12a1∧b2

Skew symm.∑ W11a1∧b1

{-1,0,1}Dkδ

typeMatrix formOperation
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Reconstruction and natural inner products
Co-volume Mimetic Whitney

  

! 

I

! 

cij
1 "id" j # " jd"i( )

i< j

$

Dodzuik (1976)
Hyman, Scovel (1988)

Hyman, Shashkov, 
Steinberg (1985-04)

Nicolaides, 
Trapp (1992-04)
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"
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V
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V
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+
V
3
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V
1
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1
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2 "
1

V
2
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2

sin
2 "
2

V
1
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1

sin
2 "
1

V
1

sin
2 "
1

+
V
2

sin
2 "
2

# 

$ 

% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 

! 

V
i

! 

" ij

1
= #id# j $ # jd#i

! 

" * local non-local non-local
conforming
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Mimetic discretization of magnetic
diffusion: translation to forms

1st order PDE with material laws

1st order PDE with codifferentials

2nd order PDE

! 

" #E = $
%B

%t
J =&E

" #H = J B = µH

! 

"
# $1 j = e

"
µ $1 b = h

! 

" #E = $
%B

%t

1

&
" #

1

µ
B = E

! 

de = "d
t
b

e = #
$ "1 d #µ "1 b

! 

" #
1

$
" #

1

µ
B = %

&B

&t

! 

d "
# $1 d "µ $1 b = $d

t
b

NOTE: we could have eliminated the primal pair (E,B) and obtain
the last two equations in terms of the dual pair (H,J).

! 

e,b( )

! 

h, j( )dual

primal

curl rangedomain

! 

de = "dtb

dh = j

Γ1

Γ2

Ω
! 

n"H = h
t

! 

n"E = e
t
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Option (I):
Material properties via codifferentials

Direct
Conforming
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"
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2
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"
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de
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t
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2

e
h

1
, ˆ e 

h

1( )
#

= b
h

2
,d ˆ e 
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1( )
#

Theorem (Bochev & Hyman)

Assume that I is conforming reconstruction operator. Then, the
direct and the conforming mimetic methods are completely
equivalent.
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e
1
" C

1
; b

2
" C

2
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e
h

1
" #

1
d,K( ); b

h

2
" #

2
d,K( )
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Option (II)
Mimetic models with weak material laws

Translate 1st order system to an equivalent 4-field constrained optimization problem

! 

de = "dtb #
$ "1 j = e

dh = j #
µ "1 b = h

  

! 

min
1

2
" #

" $1 j $ e( )
2

+ µ #
µ $1 b $ h( )

2% 

& 
' 

( 

) 
* 

subject to   de = $dtb  and   dh = j

Discretize in time

  

! 
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1

2
" #

" $1 j $ e( )
2

+ µ% #
µ $1 b $ h( )

2& 

' 
( 

) 

* 
+ subject to   de = $% b $ b ( )  and   dh = j

Discretize in space (fully mimetic)
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2
" "#1

jh

2 # eh

1( )
2

+ µ$ µ#1
bh

2 # hh

1( )
2% 

& 
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subject to   deh

1 = #$ bh

2 # b h
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DirectConforming
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min
1

2
" "#1

j
2 # e

1( )
2

+ µ$ µ#1
b
2 # h

1( )
2% 

& 
' 

( 
) 
* 

subject to   +e
1 = #$ b

2 # b 
2( )  and   +h

1 = j
2

– Does not require a primal-dual grid complex
– Explicit discretization of material laws is avoided
– Construction of a discrete ∗ operation not required 

Advantages

! 

" 
# 
$ 
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So, where are the least-squares?
(An answer to the $64K Question)

  

! 

de
h

1 = -" b
h

2 # b 
h

2( ) $ b
h

2 = b 
h

2 # "#1de
h

1

! 

dhh
1

= jh
2

" jh
2

= dhh
1

But, instead of using Lagrange multipliers we note that constraints can be satisfied exactly.
⇒  we can eliminate the variables in the ranges of the differential operators:

We start from the (fully) mimetic discrete 4-field principle

  

! 

min
1

2
" "#1

jh

2 # eh

1( )
2

+ µ$ µ#1
bh

2 # hh

1( )
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' 
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* subject to   deh

1 = #$ bh

2 # b h
2( )  and   dhh

1 = jh

2

⇒           a Mimetic LSP is  equivalent to a fully compatible
                        discretization of the 4-field principle

The constrained 4 field principle reduces to the unconstrained (least-squares) problem
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2
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⇒
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1 " h
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1

⇒
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Where are the mixed methods?

! 

"
1
d,K( ) # "2 d,K( )$ e

h

1
,b

h

2( )

uses mimetic approximations for both the primal and the dual variables:

A fully mimetic discretization of the semidiscrete 4-field principle

  

! 

min
1

2
" #

" $1 j $ e( )
2

+ µ% #
µ $1 b $ h( )

2& 

' 
( 

) 

* 
+ subject to   de = $% b $ b ( )  and   dh = j

A primal mimetic method
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2
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hh
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, jh
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1
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! 

e,b( ); h, j( )

! 

hh
1
, jh
2( )" #

1
d,K( ) $ #2 d,K( )

and reduces to a mimetic least-squares. However, we can apply mimetic discretization
to just one of the two pairs of variables, either the primal or the dual:

A dual mimetic method
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The primal mimetic method
We start from the primal mimetic discrete 4-field principle
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d,K( )Using that gives the mixed problem

Clearly, the minimum is achieved when                                         .  Instead of eliminating
the constraints now we eliminate the functional and obtain the discrete system
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The range variable can be eliminated to obtain a Rayleigh-Ritz type equation
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It is a fully discrete version of the equivalent, second order eddy current equation

! 

" ˙ E +# $µ%1
# $E = 0
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The three methods: summary
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Fully mimetic

Primal mimetic

Dual mimetic
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Mimetic LS = Primal + Dual Mimetic
Theorem Let                        be the mimetic least-squares solution. Then

! 

eh
1
,bh
2( ), hh1 , jh2( )

! 

e
h

1
,b

h

2( ) is the solution of the primal mimetic method

! 

hh
1
, jh
2( ) is the solution of the dual mimetic method

This means, mimetic LS is equivalent to simultaneous solution of the primal and dual methods

4-field variational
principle

! 

e
h

1
,b

h

2( )

! 

hh
1
, jh
2( )

Primal  mimetic method
(mixed or Ritz)

Dual  mimetic method
(mixed or Ritz)

Fully mimetic method
(least-squares)

If b(x,0)=0, or we solve in frequency domain, we also have that
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Proof
The first order necessary condition for the least-squares principle is
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Expand each term
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The least-squares optimality system uncouples into two independent equations
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Primal mimetic

If b(x,0)=0, or in frequency domain, then the 2nd LS equation is identical to 
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Part II

(the fun part)



Computational mathematics and algorithms  

Diffusion:The 5 Spot Problem
From: T. Hughes, A. Masud and J. Wan, A stabilized mixed DG method for Darcy flow

κ=1

 Problem is driven by a Neumann boundary condition (normal flux)
 Source/Sink is approximated by an equivalent distribution of the normal flux
 Solved as a time-dependent problem (heat equation) using Implicit Euler
 Grid has 625 uniform quad elements

Source +1/4

Sink -1/4

3/(8h)
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No Source Term

mimetic nodal
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Oscillatory Source

! 

f = ncos " (n #1)x( )cos " (n #1)y( ) $
1

"

%

2
&n,n; n = 25

  

! 

added perturbation "
1

2# 2
n
$
n,n

% 0.002

mimetic nodal
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Vector Field Comparison

Mimetic LS Nodal LS

 Source
OFF

Source
ON
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Diffusion: The 5 Strip Problem

Exact solution

  

! 

" =1# x;

u =
$
i

0

% 

& 
' 

( 

) 
*   in strip i

 Problem is driven by Neumann boundary condition (normal flux)
 Solved as a time-dependent problem (heat equation) using Implicit Euler
 Grid has 400 uniform elements aligned with the interfaces between the strips

From: T. Hughes, A. Masud and J. Wan, A stabilized mixed DG method for Darcy flow

κ5=2

κ4=10

κ3=1

κ2=6

κ1=16
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Mimetic vs. Nodal Least Squares

0.1425E+000.8926E-020.7470E+020.1759E+01Nodal LS
0.3041E-130.4553E-110.9839E-130.1670E-08Mimetic LS

H1 ScalarL2 ScalarH(div) FluxL2 Flux

Δt=0.01



Computational mathematics and algorithms  

Nodal LS at different time steps

Δt=1.0Δt=0.01

0.1425E+000.8926E-020.7470E+020.1759E+01Δt=0.01
0.1423E+000.8892E-020.7206E+020.1925E+01Δt=1.0

H1 ScalarL2 ScalarH(div) FluxL2 Flux

Nodal LS Solution worsens when Δt is reduced 
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Why Nodal LS fails?

RT

Q1

H1

H(div)

Solution of the 5 strip problem belongs to the discrete space: recovered by the mimetic LS

Nodal Least-Squares: gives the best energy norm approximation of that solution out of Q1

Least-Squares solution is a
projection onto the discrete space

 ⇓
 gives the best possible

approximation out of that space
with respect to the energy norm
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Conclusions (I)

  discrete spaces not subject to a joint inf-sup: can be selected independently!

 MLS inherit the best computational properties of primal and dual mimetic:

Primal →  Optimal accuracy in the primal variable
Dual     →  Optimal accuracy in the dual variable

  MLS are locally conservative
  MLS lead to symmetric and positive definite algebraic systems

Mimetic least-squares are an attractive alternative to

mixed and finite volume schemes

Mimetic Least-Squares (MLS) for 2nd order PDEs result from weakly
enforced material laws and provide realization of a discrete Hodge * operator

MLS offer important advantages:
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Conclusions (II)
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There’s no free lunch: least-squares are not immune to compatibility:
 LS allow to circumvent compatibility between the spaces
  LS do not allow to circumvent compatibility of spaces 

The latter is governed by PDE structure and must be respected! 
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Magnetic Diffusion: Z-Pinch Model

  

! 

10
"4

mm
  

! 

3.3"10
3
mm

Scales: 
PULSE DURATION 10-9 sec
TIME SCALE 10-3 sec
CURRENT POWER 20x106 A
X-RAY POWER 1012 W
X-RAY ENERGY 1.9x106 J

Z-machine: Electric currents are used to
produce an ionized gas by vaporizing a spool-
of-thread sized array of 100-400 wires of
diameter ≈ 10µm

  

! 

3"10
2
mm

C. Garasi, A. Robinson

MHD MODEL
 = 

Hydrodynamics + Magnetic Diffusion
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Mimetic LS vs. Nodal LS: E-field

  

! 

" #
1

µ
B =$E  Ampere

" #E = %
&B

&t
  Faraday

Gap modeled as a
heterogeneous

conductor
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Mimetic LS vs. Nodal LS: B-field

Nodal LS
Ker(curl)={0}

Mimetic LS
Ker(curl)={grad p}


